
Lambda Station

Reservation Service Work Plan

Describe Data Model

● Client specifies src ip+p, dst ip+p, bandwidth,
time slot, protocol (optional)

● Service reservation ticket (reservation ID)
● Ticket status (Boolean?)
● Flow specification (client params + additional

info such as DSCP)
● Local site configuration. Needs to be

standardized but not used by Web Service

ticket ID, UID
reservation parameters,
priority=#LS (every LS has some number, preset or generated by LS Discovery
status = ‘open’
created = now() (up to second resolution due MySQL limitations,

could be improved to millisecond if switched to PostgreSQL)

Open Service Ticket

Local LS Reservations Table

Open ticket locally and
wait to become pended,
while pre-testing local
Scheduler Queue for
Resource availability Open ticket remotely and wait

to become pended while
pre-testing remote Scheduler
Queue for Resource availability

ticket ID, remote ticket ID,UID,
reservation parameters,

LSID(from where ticket originated)
created=remote_created
priority= remote_priority
status=‘open’

Remote LS Reservations Table

set pended (deadlock avoidance):
reject request if (its overlapped with previous one came from the same user)
else
set status => ‘pended’ if (there is at least one Ticket where

status < ‘booked' and (created < ? or
(created = ? and ((inBW + outBW) > ? or

((inBW + outBW) = ? and (starttime < ? or priority > ?)))))

send remote ID back

rollback if timeout

lock local Scheduler Queue and
check for availability

rollback if timeout (set status => ‘open’)
response to user if there is no Resource available

lock remote Scheduler Queue and
check for Resource availability (with

adjusted startime/endtime if there was
no availability on local LS)

unlock the queue and book it on both
LS(set status=>‘booked’)

rollback if timeout (set status => ‘open’)
response to user if there is no Resource available

ask client if there is a resource available but for the future starttime

locking Queue:
Fine locking granularity could be achieved by utilizing

transactional DB, such as InnoDB (MySQL) or Postgresql without AutoCommit and row locking
if its not required then simple table locking would be sufficient (
simulation with 4 LSs * 3 clients per station with ~5 sec connection delay
showed ~100 sec per request to get booked), see graph on next page.

Scheduler Internals

Outbound tickets queue

Historical/Utilization queue

15 minutes intervals

SRT

Now 1 month

...
Local LS

Inbound tickets queue

Historical/Utilization queue

15 minutes intervals

SRT

Now

...
Remote LS

1 month

Explanation
– mutex is done by locking on DB level (table locking or row locking)

– deadlock avoidance is implemented by prioritizing requests

– For every new Outbound Service Ticket (SRT check if SRT will fit (<= Available_BW) on Remote LS
with Inbound Tickets Queue (ITQ), get response (Yes or No or No, but reservation is available in the
nearest future (< 1 day ?), then check if SRT will fit (<= Available_BW) in Outbound Tickets Queue
(OTQ) time slot requested by user/application (U/A), get response, process both responses and give (U/A)
choice to confirm or decline available reservation (giving choice is optional, we can start with Yes or No).
If user or user’s application getting No then it would be helpful for user to create visual representation of
ongoing reservation’s table.

– If U/A accepts then add requested BW into corresponded intervals on Local LS Scheduler OTQ and
Remote LS Scheduler ITQ and create new records in Reservations table on Local LS and Reservations
table on Remote LS.

– Every 15 minutes move first interval into the right end of Outbound Historical/Utilization Queue on Local
LS and do follow the algorithm described above on remote one(could be compared with real MRTG based
utilization).

– Do the same just by reversing the names (Outbound -> Inbound) for Inbound Service Reservation tickets

– We will create OTQ/ITQ one pair per LinkID per LS for now, considered that we are not policing local
resources

– Naming schema should be valid according to Local LS Network Topology XML Schema

– Special monitoring service will be showing up reservation table progress for local LS and resource
availability

Identify Operations

● Identify the operations that can be performed on
that data model

– Start with the WSDL that was used for the Perl
prototype

– Apply the data model to the WSDL

– Include client -> LS and LS -> LS operations
● May split into two WSDLs later

– Each LS controls the reservations for its own
resources

Generate Code

● Generate java stubs from the WSDL

– jclarens makes this trivial

● Fill out the simple operations to test the basic
infrastructure

– sayHello/echo method

Fill out Operations

● Implement the remainder of the WSDL
operations

– Generate Javadoc to describe operations and their
implementation

– Each operation must have a unit test to verify that it
works

User Interface

● UI for making and viewing reservations is not a
priority

– Wait until after the basic server side functionality
exists

– UI should use RPC calls to get information
● Clean separation of presentation and control layers

● Both Javascript and JSP can do RPC

	Lambda Station
	Describe Data Model
	Scheduler Internals
	Explanation
	Identify Operations
	Generate Code
	Fill out Operations
	User Interface

